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Abstract

A low-dimensional model for the planar nonlinear dynamics of a fluid-conveying cantilever is constructed using the

proper orthogonal decomposition method (PODM) in the post-flutter region. Firstly, the nonlinear partial differential

equation (PDE) of motion is converted into a finite set of coupled ordinary differential equations (ODEs) by a Galerkin

projection scheme using the cantilever beam modes as a basis. A finite difference method based on Houbolt’s scheme is

used to obtain the stable solution of the nonlinear ODEs. A complex eigenvalue analysis is also carried out to determine

the region of flutter instability with increasing flow velocity. Secondly, an efficient projection basis for the Galerkin

scheme is constructed by using PODM for the low-dimensional representation of the original PDE describing the

dynamics of the system. The important question regarding the capability of the reduced-order model to capture the

principal features of the original system is addressed. Interestingly, the reduced-order basis constructed using PODM at

a specific flow velocity can efficiently reproduce the system response at a range of flow rates involving limit-cycle

oscillations (LCO) in the proximity of the flutter point. Furthermore, a weighted POD basis is derived subsequently in

order to enhance the efficacy of the reduced-order model over a wider range of flow velocity, in the case when the LCO

amplitude exhibits considerable variation beyond the flutter velocity.

r 2003 Published by Elsevier Science Ltd.

1. Introduction

The linear dynamics of a cantilevered pipe conveying fluid has been studied extensively as a classical problem of

oscillatory instability involving a gyroscopic nonconservative system (Pa.ıdoussis, 1970, 1998; Pa.ıdoussis and Li, 1993).

The system typically displays oscillatory instability, developing flutter by undergoing a Hopf bifurcation resulting in a

limit-cycle oscillation (LCO). In contrast, the end-supported pipe, its conservative counterpart, loses instability through

divergence, commonly known as buckling (Pa.ıdoussis, 1998). In order to capture the nonlinear behaviour of the system,

Semler et al. (1994) derived a consistent nonlinear equation of motion accounting for the nonlinear stiffness, inertia and

damping terms, correct to third order. The theoretical analysis carried out later on this system (Pa.ıdoussis and Semler,

1993, 1998; Semler and Pa.ıdoussis, 1995) however, was restricted to low-dimensional models only.

In this paper, higher-dimensional nonlinear dynamical models of a fluid-conveying cantilever are studied, using a

Galerkin projection scheme with the cantilever beam modes as a basis. This methodology is perhaps appropriately

referred to as a ‘‘Fourier–Galerkin scheme’’ when such a basis consists of harmonic functions (Kwasniok, 1997). Here,

however, instead of referring to such a method as ‘‘cantilever-beam-mode-Galerkin scheme’’, which is too long-winded,

we decided to refer to it as the Fourier–Galerkin scheme, although the cantilever beam functions are not harmonics.

The convergence of the solution scheme of the nonlinear partial differential equation (PDE) in relation to the number of
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terms retained in the truncated series expansion is systematically studied. Subsequently, a reduced model of the original

PDE is constructed by the proper orthogonal decomposition method (PODM), using the time series of the displacement

response from the Galerkin projection scheme with the beam modes as basis.

The proper orthogonal decomposition (or Karhunen–Lo"eve decomposition) is an optimal expansion scheme to

discretize a random process (Lo"eve, 1977). This well-known approach has been successfully applied to obtain low-

dimensional models (Sirovich et al., 1990) of turbulent flow (Sirovich, 1987a, b, c; Aubry et al., 1988; Berkooz et al.,

1993), chaotic systems (Sirovich and Rodriguez, 1978; Sirovich, 1989), and convection problems (Sirovich and Deane,

1991). Breuer and Sirovich (1991) used PODM to obtain the eigenfunctions of linear systems. Park and Cho (1996),

Park and Yim (1998) and Park and Lee (2000) applied this technique in control problems involving distributed

parameter systems. In the context of aeroelasticity, the applications of this approach can be found in Dowell et al.

(1997), Kim (1998, 2001), Kim and Bussoletti (2001), Kim et al. (2001), Thomas et al. (2001) and Hall et al. (2000). The

use of PODM in nonlinear dynamics of the mechanical systems is elucidated in Cusumano and Bai (1993), Kreuzer and

Kust (1996), Georgiou et al. (1999), Ma et al. (2000), Ma and Vakakis (2001) and Lenaerts et al. (2001). The deficiencies

and further modification of PODM has been discussed in Christensen et al. (2000) and Lin (1995). Sarkar and Ghanem

(2001) have applied PODM in reduced-order modelling of the middle-frequency-range vibration of randomly

parametered systems. Kwasniok (1997, 2001) constructed an optimal low-dimensional representation of PDEs using

principal interaction patterns, which appears to be even superior to the proper orthogonal decomposition method.

However, the approach is considerably more cumbersome compared to PODM from the viewpoint of mathematical

analysis and numerical implementation. Kwasniok has also pointed out the limiting case when the principal interaction

patterns become identical to the proper orthogonal modes.

To the best of the authors’ knowledge, the proper orthogonal decomposition technique is used for the first time in this

paper to study the nonlinear dynamical behaviour of the nonlinear PDE describing the motion of a cantilever conveying

fluid. The flutter and LCO characteristics of the system are investigated using a reduced-order model emerging from

PODM. The proper orthogonal modes (POMs) obtained for a specific flow rate are used to constitute a low-

dimensional model which reproduces the system behaviour over a range of flow velocities, specifically the LCOs of the

system in the vicinity of the flutter point. To improve the accuracy of the reduced model, a weighted PODM is also

derived, which can capture the dynamic behaviour by the low-dimensional model for a wider range of flow velocities,

especially in cases when the LCO amplitude undergoes considerable variation with flow rate.

2. Mathematical model

The schematic diagram of the cantilever pipe under consideration is shown in Fig. 1. The system consists of a tubular

beam of length L; internal cross-sectional area A; mass per unit length m; flexural rigidity EI ; coefficient of Kelvin–

Voigt damping a; conveying fluid of mass M per unit length, flowing in the pipe with an axial velocity U : The pipe,

initially assumed to lie along the x-axis in the direction of gravity, undergoes oscillation yðs; tÞ in the (x; y) plane, where s

is the curvilinear coordinate. The centre-line of the pipe is assumed to be inextensible. Introducing the nondimensional

quantities (Semler et al., 1994)
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2.1. Finite-dimensional representation

The response field Zðx; tÞ is generally expanded using a time-independent global basis which is given by a denumerable

and complete set of orthogonal functions in the solution space. Such a basis is obtained from the eigenfunctions of a
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suitably chosen linear self-adjoint differential operator depending on the spatial domain and the boundary conditions.

The projection of the nonlinear PDE using the Galerkin approach onto these truncated adjoint-basis functions results

in a finite set of coupled nonlinear ODEs which can capture the dynamical characteristics of the PDE with sufficient

Fig. 2. Eigen-subspace of the correlation matrix for g ¼ 10; b ¼ 0:65 and u ¼ 13:5: (a) Eigenvalue spectrum; (b) to (f) eigenvectors of

first to fifth modes: —, POM; - - -, corresponding beam mode.

Fig. 1. Schematic diagram of the system.
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accuracy. It is worthwhile to point out that the number of degrees of freedom needed in such a Galerkin scheme to

reproduce the original system behaviour crucially depends on the appropriate choice of the basis functions. If possible

and computationally practicable, the basis functions are taken to be the normal modes of the linear self-adjoint-

differential operator corresponding to the original nonlinear PDE. A Galerkin procedure employing any set of such a

complete basis functions ciðxÞ approximates the nonlinear PDE (having an infinite number of degrees of freedom) into

a finite set of coupled ODEs. However, in many cases, it is not practicable to use the complete linear operator for this

purpose, and only a convenient part is used, as discussed in Pa.ıdoussis (1998). Indeed, in many cases it is more

computationally efficient to use a very simple basis, in which the functions ciðxÞ are known in advance and do not

change as parameters are varied. This is the case for the problem at hand, where ciðxÞ are taken to be the linear normal

modes of a cantilever beam, in which case the solution of the original PDE in Eq. (2) is expressed as

Zðx; tÞ ¼
XN

i¼1

ciðxÞqiðtÞ: ð3Þ

Performing Galerkin projections, the coupled ODEs corresponding to Eq. (2) are expressed as
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Under the assumption of a steady flow ð ’u ¼ 0Þ; we obtain
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Fig. 3. Time traces using Fourier–Galerkin scheme for g ¼ 10; b ¼ 0:65 and u ¼ 13:5: (a) N ¼ 2; (b) N ¼ 6; (c) N ¼ 10: (d) Time trace

using POD-Galerkin scheme with N ¼ 2:
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and
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In the first instance, this approach is adopted here to solve the PDE, and convergence of the solution is studied in

relation to the number of terms retained in the expansion. For brevity, this methodology will be referred to as the

Fourier–Galerkin scheme in what follows, as mentioned before.

2.2. Linear stability analysis

The linear stability analysis can be carried out by studying the eigenvalues of the linear version of Eq. (4),

.qi þ Cij ’qj þ Kijqj ¼ 0; ð11Þ

as the flow velocity is increased. The complex eigenvalues will be presented in the form of Argand diagrams. In such

a diagram, the onset of oscillatory instability or flutter, as exhibited by this specific system, is identified as the point

Fig. 4. (a)–(c) The dimensionless complex frequency of the system as function of dimensionless flow velocity, u; for g ¼ 10 and

b ¼ 0:65 with Fourier–Galerkin scheme with N ¼ 10: (a) Argand diagram (only first four complex frequencies are plotted); (b)

imaginary parts of the complex frequencies versus u; (c) real parts of the complex frequencies versus u; the circled numbers in (a)

identify the nominal mode number of the locus concerned. (d)–(f) Similar results from the POD-Galerkin scheme (N ¼ 2).
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when the imaginary part of any one of the eigenfrequencies becomes negative, inducing a negative damping in the

system.

3. Proper orthogonal decomposition (PODM)

In numerous contexts, the dynamics of PDEs are often confined to attractor sets of relatively low dimension in the

appropriately selected solution coordinates. Despite the popularity and compact mathematical framework of the

Fourier–Galerkin schemes, the basis consisting of the normal modes of the linear self-adjoint system corresponding to

the nonlinear PDE is very general and does not contain any information regarding the intrinsic nonlinearity existing in

the original nonlinear PDE. Thus, the methodology does not adapt well to the particular system at hand. Consequently,

such a basis is generally not the best choice in expanding the solution of the nonlinear PDE. In this particular case,

where the cantilever beam eigenfunctions are used for ciðxÞ; these modes do not even contain any information on the

effect of flow, and in the case of vertical pipes ðga0Þ; not even on the effect of gravity. Thus, the order of the systems of

ODEs obtained using the Fourier–Galerkin approach is much larger than the true dimensionality of the original PDE.

It becomes then logical to incorporate the features involving the nonlinearities, flow effects, etc., existing in the original

system in order to construct the basis functions, and so arrive at a low-dimensional model reflecting more closely the

inherent dimensionality of the original PDE.

In this context, the proper orthogonal decomposition method appears to be an obvious choice. In numerous papers,

the dimensionality and spatio-temporal complexities have been successfully studied using the PODM, also known as

Karhunen–Lo"eve expansion. The method optimally extracts spatial information and identifies the dimensionality of a

system from a set of time-series data gathered from numerical simulations or physical experiments. The model

reduction of the system is achieved using two steps. Firstly, the traditional Fourier–Galerkin scheme is used to obtain

the converged solution of the original PDE. Secondly, an efficient POD basis is constructed using the system response

(obtained from the Fourier–Galerkin scheme), onto which the original PDE is projected to obtain an alternative, better

low-dimensional model.

3.1. Direct PODM

Consider a time series uðx; tÞ; sampled at a location xj ; j ¼ 1yn at time instants ti; i ¼ 1yM; with uniform time

intervals consistent with the Nyquist frequency. The PODM represents the time series uðx; tÞ with an optimal (in the

Fig. 5. Bifurcation diagrams for g ¼ 10 and b ¼ 0:65: * ; Fourier–Galerkin scheme for N ¼ 2;y; same for N ¼ 10; and 3; POD-

Galerkin scheme for N ¼ 2:
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mean-square sense) number of degrees of freedom where the basis vectors are obtained by solving the maximization

problem (see, e.g. Sirovich and Deane, 1991; Berkooz et al., 1993; Park and Lee, 2000).

l ¼

R R
O /uðx; tÞ; uðy; tÞSCðxÞCðyÞ dx dyR

O CðxÞCðxÞ dx
; ð12Þ

where /:S is the time-averaging operator and O is the spatial domain of integration. The optimization problem finally

leads to a eigenvalue problem, stated as

CW ¼ lW; ð13Þ

where the time-averaged two-point correlation matrix is given by

Cðx; yÞ ¼
1

M

XM

i¼1

uðx; tiÞuðy; tiÞ; ð14Þ

where M is the number of sample points and the set of Ws are the spatial coherent structures in the spatio-temporal

records. The dominant eigensubspace of the eigenvalue problem of the correlation matrix, determines the dominant

spatially coherent modes. An eigenvector W is referred to as the coherent fluctuation or proper orthogonal mode

(POM), and l represents the amount of energy captured by the corresponding mode; l is always positive. The

correlation matrix being symmetric and positive-definite, the POMs form a complete orthogonal basis which can

represent the process uðx; tÞ: They are also optimal, in the sense that they capture more energy than any other set of

basis functions, with a minimum number of terms. The optimal system dimension N is determined asPN
i¼1 li=

Pn
i¼1 liX99%; assuming the sufficiency of the POMs to capture 99 percent of the energy of the signal. In

relation to the present study, the solution Zðx; tÞ of the PDE given by Eq. (2) will be approximated using the POMs

obtained at a specific flow rate as basis. The coherent structures or POMs constructed at a specific flow velocity,

however, may not be the coherent structures at any other flow velocity. However, the new coherent structure or POMs

can be calculated from the time series of the response obtained using the POMs at a neighbouring flow velocity.

Interestingly, as will be demonstrated later, the POMs constructed at a specific flow rate beyond the flutter velocity can

Fig. 6. Temporal snapshots of spatial responses for g ¼ 10 and b ¼ 0:65: (a) Fourier–Galerkin scheme with N ¼ 10; (b) POD-Galerkin

approach with N ¼ 2:
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efficiently reproduce the system response with a low-dimensional model for a reasonably wide range of flow velocities

involving LCOs. This aspect will be illustrated through numerical examples in Section 4.

3.2. Weighted PODM

Depending on the system parameters, the LCO amplitude can display considerable variation as flow velocity

is increased, resulting in a significant change in the POMs. Consequently, the POMs constructed at a specific

flow rate may no longer be an efficient projection basis at a neighbouring flow velocity. To circumvent the problem

of constructing a new set of POMs at each flow velocity, a weighted PODM is now adopted in this section.

This approach allows a single POD basis to devise an efficient solution scheme for the PDE with a cosiderable variation

of flow rate. Identification of such weighted POMs can be effectively formulated in terms of a multi-objective

optimization problem. The two general approaches to such multicriteria optimization problems are preference

and nonpreference methods. The preference method makes use of the explicit information regarding the

relative importance of the different objective criteria in order to identify a best overall solution. The nonpreference

method, often referred to as Pareto optimization, makes no such assumption about the relative importance of

different objective criteria, but instead, identifies a field of solutions where no solution is classified to be better

than any other solution in the field for all objective criteria. The Pareto optimization scheme is specifically suitable

for the nonconvex optimization problem involving conflicting objectives (Zlobec, 2001). In this paper, we consider

the preference approach in order to generate the weighted POMs. A conflict between the different objectives to

determine the best possible POMs appropriate for all flow rates may emerge, as will be explained later. The pre-

ference approach can handle such optimization issue if the problem at hand is convex in nature (Pareto, 1906;

Koski, 1985; Das and Dennis, 1997; Zlobec, 2001). As will be demonstrated by the results, a remarkable feature of the

weighted POD scheme for this specific problem, is that the results are not sensitive to the weights used in the preference

approach.

The weighted POMs are obtained by solving the following eigenvalue problem:

XM

k¼1

wkCk

" #
W ¼ lW; ð15Þ

Fig. 7. Bifurcation diagrams for g ¼ 100 and b ¼ 0:65: . ; for Fourier–Galerkin scheme with N ¼ 10; �; for POD-Galerkin scheme

from u ¼ 20 data and N ¼ 4; * , for POD-Galerkin scheme from u ¼ 23 data and N ¼ 4; 3; for weighted POD-Galerkin scheme with

N ¼ 4 for u1 ¼ 20 and u2 ¼ 23 with corresponding weights w1 ¼ 0:5 and w2 ¼ 0:5:
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emerging from the maximization problem

l ¼

R R
O½
PP

k¼1 wk/uðx; t;UkÞ; uðy; t;UkÞS	CðxÞCðyÞ dx dyR
O CðxÞCðxÞ dx

; ð16Þ

where P is the number of discrete flow velocities at which the time series of the response is obtained, and wk is the weight

given to the response time series constructed at flow velocity Uk: The convexity of the optimization problem can be

realized directly from each objective function H ¼
R R

O /uðx; t;UÞ; uðy; t;UÞSCðxÞCðyÞ dx dy having positive Hessian

function @2H=@C2 > 0: Note that the aforementioned weighted PODM conceptually bears close similarity to the work

by Kim (2001) and Kim et al. (2001). It will be shown numerically that the weighted PODM model can efficiently

reproduce the response of the complete dynamical system obtained using the Fourier–Galerkin approach.

4. Numerical examples

Based on the aforementioned mathematical formulation, a numerical investigation is carried out in this section. The

solutions of the set of nonlinear ODEs are obtained by a finite difference method based on Houbolt’s scheme (Semler

et al., 1996), with a time-step size of 0.0001. The damping coefficient a ¼ 0 is taken to be zero.

In Fig. 2, the eigenvalues and eigenvectors of the correlation matrix in Eq. (13) are plotted for the flow velocity

u ¼ 13:5 for a fluid-conveying cantilever with b ¼ 0:65 and g ¼ 10: From the eigenvalue spectrum in Fig. 2(a), the order

of the reduced model is clearly identified to be 2. Consequently, only the eigenvectors corresponding to these two largest

eigenvalues are used as a basis to obtain a convergent solution. In Figs. 2(b)–(f), the solid and dashed lines represent the

successive POMs and the beam modes of the linear structure. Evidently, the POMs differ significantly from the beam

modes in order to capture both linear and nonlinear characteristics of the system in flow with just two modes; in this

way, POMs emerge as a superior basis for a reduced-order model.

Fig. 8. Eigen-subspace of the correlation matrix for g ¼ 100; b ¼ 0:65 and u ¼ 20: (a) eigenvalue spectrum; (b)–(f) eigenvectors of first

to fifth modes (—) compared to corresponding beam mode (- - -).
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In Fig. 3(a)–(c), the tip displacement responses obtained by using 2-, 6- and 10-dof Fourier–Galerkin schemes are

shown, in order to study the convergence of the solution. No significant improvement in the time traces of the response

is observed in the Fourier–Galerkin scheme by taking terms higher than 10 in expanding the solution. In Fig. 3(d), the

result obtained using 2-dof POD-Galerkin method is presented, which compares well with the result using 10-dof

Fourier–Galerkin approach of Fig. 3(c).

The Argand diagram (representing the complex eigenfrequencies of the linear system plotted in terms of their real and

imaginary parts as functions of the dimensionless flow velocity u) is presented in Fig. 4(a) obtained using the 10-dof

Fourier–Galerkin approach. Only the lowest four eigenfrequencies are plotted for clarity. Note that only one mode, the

nominal ‘‘first mode’’ becomes unstable by crossing the real axis, thus resulting in a negative damping in the system.

The real and imaginary parts of the complex eigenfrequencies are plotted separately versus the flow velocity in Fig. 4(b)

and (c). Similar plots are also shown in Fig. 4(d)–(f) obtained with the 2-dof POD-Galerkin approach, the POMs

having been obtained from simulation at u ¼ 13:5: From Figs. 4(b) and (e), it is seen that the critical flutter velocity

ðucrC12:5Þ predicted by 2-dof POM-Galerkin approach matches quite well with the result from 10-dof Fourier–

Galerkin method ðucrC12:75Þ: However, in the POD case, a mode veering has taken place, and the second part of the

first-mode locus at higher u is exchanged with that of the second mode. This is not unusual (Pa.ıdoussis, 1998).

Fig. 5 presents the bifurcation diagram constructed using the Fourier–Galerkin method with 2- and 10-dof. The

result from the 2-dof POD-Galerkin approach is also plotted, with the POMs obtained from simulations at u ¼ 13:5:
Interestingly, the 2-dof POD-Galerkin method can efficiently reconstruct the LCO amplitude over a range of flow

velocity, whereas the result from 2-dof Fourier–Galerkin model is unacceptably different, as expected; see Pa.ıdoussis

(1970, 1998).

Fig. 6(a) and (b) shows the snapshots of the spatial response of the cantilever at various time steps obtained by the 10-

dof Fourier–Galerkin and 2-dof POD-Galerkin method. The spatial responses obtained using these two methodologies

show an excellent match, as expected.

Fig. 7 shows the bifurcation diagram for a system b ¼ 0:65 and g ¼ 100: The bifurcation diagram, constructed using

a 10-dof Fourier–Galerkin method exhibits a considerable variation in amplitude as the flow velocity increases beyond

Fig. 9. Eigen-subspace of the correlation matrix for g ¼ 100; b ¼ 0:65 and u ¼ 23: (a) eigenvalue spectrum; (b)–(f) eigenvectors of first

to fifth modes (—) compared to corresponding beam mode (- - -).
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ucr ¼ 18: The bifurcation diagrams using a 4-dof POD-Galerkin method are also plotted, where the POMs having been

constructed with the data at flow velocities u ¼ 20 and 23. The weighted POMs are also constructed with different

weights using the time series of the response at u ¼ 20 and 23. All these aforementioned POMs are shown in Figs. 8–12.

In Fig. 7, the bifurcation diagram using a 4-dof POD-Galerkin scheme are plotted with the corresponding POMs shown

in Fig. 10 (with weights w1 ¼ w2 ¼ 0:5). The bifurcation diagrams obtained using other weighting schemes produce very

similar results as will be illustrated later.

The POMs constructed at u ¼ 20 and 23 (shown in Figs. 8 and 9) reconstruct the LCO amplitudes with reasonable

accuracy in each of the two branches of the bifurcation diagram separated by the flow velocity of uC21:8; as observed
in Fig. 7. Unfortunately, POM models which can recreate the result in one branch of the bifurcation diagram display

very poor performance in the other branch. Interestingly, the weighted POMs display a far superior performance,

identified by its ability to capture the variations in both branches of the bifurcation diagram, as also shown in Fig. 7.

The reason for the different performance of POMs and weighted POMs will be immediately apparent by examining the

POMs in Figs. 8–10. Clearly, the spatial forms of the POMs are considerably different, the differences being more

pronounced in the case of the third and fourth POMs. Apparently, the weighted POMs reorient themselves in an

optimal fashion to exploit the information from the system response obtained at the two different flow velocities to

reconstruct the LCO amplitudes over a broad range of the flow rates. Consequently, a low-dimensional weighted POD

model can efficiently represent the original PDE under consideration.

Next, we illustrate the effect of different weighting schemes on the bifurcation diagram constructed using the

weighted POD-Galerkin approach. The POMs corresponding to three different weighting schemes are shown in

Figs. 10–12. The bifurcation diagrams, obtained using these different weighting schemes, for 2- and 4-dof POD-

Galerkin models are shown in Fig. 13(a) and (b), respectively. Although the reduced-order dimension of the POD

model is identified by the two largest eigenvalues as shown in Figs. 10–12, a 2-dof POD-Galerkin scheme shows

inadequate convergence, as observed in Fig. 13(a). However, the 4-dof POD-Galerkin models obtained using three

Fig. 10. Eigen-subspace of the weighted correlation matrix for g ¼ 100; b ¼ 0:65 for u1 ¼ 20 and u2 ¼ 23 with corresponding weights

w1 ¼ 0:5 and w2 ¼ 0:5: (a) eigenvalue spectrum; (b)–(f) eigenvectors of first to fifth modes (—) compared to corresponding beam mode

(- - -).
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different weighting schemes exhibit remarkable convergence as clearly shown in Fig. 13(b), irrespective of the weighting

used, with the three different curves being nearly identical.

This aspect highlights the importance of the low-energy POMs in higher-dimensional system modelling, as discussed

by Lin (1995). It is worthwhile to point out that the weighted POD-Galerkin method appears to be insensitive to the

weighting scheme in this specific case. However, the weighted POMs are different, as evident from Figs. 10–12.

Seemingly, the POMs obtained using different weighting schemes adapt themselves optimally (depending on the

weights) to recreate a reduced model, eventually leading to the same LCO amplitudes, as seen in Fig. 13(b).

Although the results are not presented, the weighted POD-Galerkin models obtained using data from a higher

number (more than two) of flow velocities do not appear to improve the results considerably. This means that there is

only one significant transition in the POMs, which occurs at a flow velocity of uC21:8 in Fig. 7, with the POMs

remaining unchanged within each of the two flow velocity ranges on either side.

5. Concluding remarks

A reduced-order model of the nonlinear PDE describing the dynamics of a hanging cantilever conveying fluid is

derived using the well-known proper orthogonal decomposition method. The issues regarding the possibility and

suitability of the proper orthogonal modes or coherent structures to create a low-dimensional model over a range of flow

velocities are addressed. It emerges that the proper orthogonal modes can reconstruct the LCO amplitude with a

reduced system over a wide band of flow rates. Furthermore, the superiority of a weighted POD scheme compared to

the conventional PODM in order to create a low-dimensional model over a wider range of flow velocity is

demonstrated.

The low-dimensional model constructed using the POD-Galerkin approach for nonlinear dynamics and stability

analysis can be efficiently used for numerous purposes. The first and foremost advantage of the method is evidently the

Fig. 11. Eigen-subspace of the weighted correlation matrix for g ¼ 100; b ¼ 0:65 for u1 ¼ 20 and u2 ¼ 23 with corresponding weights

w1 ¼ 0:95 and w2 ¼ 0:05: (a) eigenvalue spectrum; (b)–(f) eigenvectors of first to fifth modes (—) compared to corresponding beam

mode (- - -).
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Fig. 12. Eigen-subspace of the weighted correlation matrix for g ¼ 100; b ¼ 0:65 for u1 ¼ 20 and u2 ¼ 23 with corresponding weights

w1 ¼ 0:05 and w2 ¼ 0:95: (a) eigenvalue spectrum; (b)–(f) eigenvectors of first to fifth modes (—) compared to corresponding beam

mode (- - -).

Fig. 13. Bifurcation diagrams obtained with (a) N ¼ 2 and (b) N ¼ 4 (for g ¼ 100 and b ¼ 0:65) from weighted POD-Galerkin scheme

using data at u1 ¼ 20 and u2 ¼ 23 with corresponding weights: 3; w1 ¼ 0:95 and w2 ¼ 0:05; * ; w1 ¼ 0:5 and w2 ¼ 0:5;y; w1 ¼ 0:05 and
w2 ¼ 0:95:
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reduction of the dimensionality of the discretized dynamical system and consequent reduction of computational cost in

performing repeated simulations with respect to parameter variations. This is so, for the bifurcation diagrams

especially, even when the computational cost of constructing the POMs is factored in. Furthermore, the reduced-order

model can conveniently be used to devise an active control strategy.

Presently, the primary emphasis is focussed on the nonlinear dynamics of the deterministic PDE describing the

motion of the cantilever pipe conveying fluids. However, when the flow is subjected to random fluctuations, the

dynamic motion of the pipe is governed by a stochastic differential equation. Reduced-order modelling can be

immensely advantageous in investigating the behaviour of such a stochastic PDE.
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